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Thus, the analytical solution for the amplitude and phase of the current
in the circuit agrees with that obtained by the technique of phasors.

7.6.3  Resonance

An interesting characteristic of the series RLC circuit is the phenomenon
of resonance. The phenomenon of resonance is common among systems
that have a tendency to oscillate at a particular frequency. This frequency

is called the system’s natural frequency. If such a system is driven by an
energy source at a frequency that is near the natural frequency, the
amplitude of oscillation is found to be large. A familiar example of this

phenomenon is a child on a swing. The swing has a natural frequency
for swinging back and forth like a pendulum. If the child pulls on the
rope at regular intervals and the frequency of the pulls is almost the

same as the frequency of swinging, the amplitude of the swinging will be
large (Chapter 14, Class XI).

For an RLC circuit driven with voltage of amplitude v
m
 and frequency

ω, we found that the current amplitude is given by

2 2( )

m m
m

C L

v v
i

Z R X X
= =

+ −

with X
c
 = 1/ωC and X

L
 = ω L . So if ω is varied, then at a particular frequency

ω
0
, X

c
 = X

L
, and the impedance is minimum ( )2 20Z R R= + = . This

frequency is called the resonant frequency:

0

0

1
orc LX X L

C
ω

ω
= =

or   0

1

LC
ω = (7.35)

At resonant frequency, the current amplitude is maximum; i
m
 = v

m
/R.

Figure 7.16 shows the variation of i
m
 with ω  in

a RLC series circuit with L = 1.00 mH, C =

1.00 nF for two values of R: (i) R = 100 Ω
and (ii) R = 200 Ω. For the source applied v

m
 =

100 V. ω
0
 for this case is 

1

LC

  

  
  

 = 1.00×106

rad/s.

We see that the current amplitude is maximum

at the resonant frequency. Since i
m 

= v
m 

/ R at

resonance, the current amplitude for case (i) is

twice to that for case (ii).

Resonant circuits have a variety of

applications, for example, in the tuning

mechanism of a radio or a TV set. The antenna of

a radio accepts signals from many broadcasting

stations. The signals picked up in the antenna acts as a source in the

tuning circuit of the radio, so the circuit can be driven at many frequencies.

FIGURE 7.16 Variation of i
m
 with ω for two

cases: (i) R = 100 Ω, (ii) R = 200 Ω,

L = 1.00 mH.
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But to hear one particular radio station, we tune the radio. In tuning, we
vary the capacitance of a capacitor in the tuning circuit such that the

resonant frequency of the circuit becomes nearly equal to the frequency
of the radio signal received. When this happens, the amplitude of the
current with the frequency of the signal of the particular radio station in

the circuit is maximum.
It is important to note that resonance phenomenon is exhibited by a

circuit only if both L and C are present in the circuit. Only then do the

voltages across L and C cancel each other (both being out of phase)

and the current amplitude is v
m
/R, the total source voltage appearing

across R. This means that we cannot have resonance in a RL or

RC circuit.

Sharpness of resonance

The amplitude of the current in the series LCR circuit is given by

i
v

R L
C

m
m=

+ −






2

2
1

ω
ω

and is maximum when 0 1/ .L Cω ω= =  The maximum value is

max /m mi v R= .

For values of ω other than ω
0
, the amplitude of the current is less

than the maximum value. Suppose we choose a value of ω  for which the

current amplitude is 1/ 2  times its maximum value. At this value, the

power dissipated by the circuit becomes half. From the curve in
Fig. (7.16), we see that there are two such values of ω, say, ω

1
 and ω

2
,

one greater and the other smaller than ω
0
 and symmetrical about ω

0
. We

may write

ω
1
 = ω

0
 + ∆ω

ω
2
 = ω

0
 – ∆ω

The difference ω
1
 – ω

2
 = 2∆ω is often called the bandwidth of the

circuit. The quantity (ω
0
 / 2∆ω) is regarded as a measure of the sharpness

of resonance. The smaller the ∆ω , the sharper or narrower is the resonance.

To get an expression for ∆ω , we note that the current amplitude i
m
 is

( ) max1/ 2
m

i for ω
1
 = ω

0
 + ∆ω. Therefore,

at ω1

2
1

1

2

1

, i
v

R L
C

m
m=

+ −








ω

ω

       

max

2 2

m mi v

R
= =
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ω
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which may be written as,

0

0

1
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C
ω ω

ω ω
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Using 2
0

1

L C
ω =  in the second term on the left hand side, we get

ω
ω

ω

ω

ω

ω

0
0

0

0

1

1
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+
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∆
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We can approximate 1
0

1

+






−
∆ω

ω
 as 1

0

−






∆ω

ω
 since 

0

ω
ω
∆

<<1. Therefore,

ω
ω

ω
ω

ω

ω
0

0

0

0

1 1L L R+






− −






=∆ ∆

or 0

0

2
L R

ωω
ω
∆

=

2

R

L
ω∆ = [7.36(a)]

The sharpness of resonance is given by,

0 0

2

L

R

ω ω
ω

=
∆ [7.36(b)]

The ratio 
0L

R

ω
 is also called the quality factor, Q of the circuit.

0L
Q

R

ω
= [7.36(c)]

From Eqs. [7.36 (b)] and [7.36 (c)], we see that 02
Q

ωω∆ = . So, larger the
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value of Q, the smaller is the value of 2∆ω  or the bandwidth and sharper

is the resonance. Using 2
0 1/L Cω = , Eq. [7.36(c)] can be equivalently

expressed as Q = 1/ω
0
CR.

We see from Fig. 7.15, that if the resonance is less sharp, not only is
the maximum current less, the circuit is close to resonance for a larger
range ∆ω  of frequencies and the tuning of the circuit will not be good.

So, less sharp the resonance, less is the selectivity of the circuit or vice
versa. From Eq. (7.36), we see that if quality factor is large, i.e., R is low
or L is large, the circuit is more selective.

Example 7.6 A resistor of 200 Ω and a capacitor of 15.0 µF are
connected in series to a 220 V, 50 Hz ac source. (a) Calculate the
current in the circuit; (b) Calculate the voltage (rms) across the

resistor and the capacitor. Is the algebraic sum of these voltages

more than the source voltage? If yes, resolve the paradox.

Solution

Given

F
6200 , 15.0 15.0 10 FR C −= Ω = µ = ×

220 V, 50HzV ν= =
(a) In order to calculate the current, we need the impedance of the

circuit. It is

2 2 2 2(2 )CZ R X R Cπ ν −= + = +

   F
2 6 2(200 ) (2 3.14 50 15.0 10 )− −= Ω + × × × ×

   2 2(200 ) (212.3 )= Ω + Ω

   291.67= Ω

Therefore, the current in the circuit is

V220
0.755 A

291.5

V
I

Z
= = =

Ω

(b) Since the current is the same throughout the circuit, we have

(0.755 A)(200 ) 151VRV I R= = Ω =

(0.755 A)(212.3 ) 160.3 VC CV I X= = Ω =
The algebraic sum of the two voltages, V

R
 and V

C
 is 311.3 V which is

more than the source voltage of 220 V. How to resolve this paradox?
As you have learnt in the text, the two voltages are not in the same
phase. Therefore, they cannot be added like ordinary numbers. The

two voltages are out of phase by ninety degrees. Therefore, the total
of these voltages must be obtained using the Pythagorean theorem:

2 2
R C R CV V V+ = +

= 220 V
Thus, if the phase difference between two voltages is properly taken

into account, the total voltage across the resistor and the capacitor is
equal to the voltage of the source.
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7.7  POWER IN AC CIRCUIT: THE POWER FACTOR

We have seen that a voltage v = v
m
 sinωt applied to a series RLC circuit

drives a current in the circuit given by i = i
m
 sin(ωt + φ) where

m
m

v
i

Z
=   and φ =

−





−tan 1 X X

R

C L

Therefore, the instantaneous power p supplied by the source is

( ) [ ]sin sin( )m mp v i v t i tω ω φ= = × +

[ ]cos cos(2 )
2

m mv i
tφ ω φ= − + (7.37)

The average power over a cycle is given by the average of the two terms in
R.H.S. of Eq. (7.37). It is only the second term which is time-dependent.
Its average is zero (the positive half of the cosine cancels the negative

half). Therefore,

cos
2

m mv i
P φ= cos

2 2

m mv i φ=

cosV I φ= [7.38(a)]

This can also be written as,

2 cosP I Z φ= [7.38(b)]

So, the average power dissipated depends not only on the voltage and
current but also on the cosine of the phase angle φ between them. The

quantity cosφ is called the power factor. Let us discuss the following
cases:

Case (i) Resistive circuit: If the circuit contains only pure R, it is called
resistive. In that case φ = 0, cos φ = 1. There is maximum power dissipation.

Case (ii) Purely inductive or capacitive circuit: If the circuit contains
only an inductor or capacitor, we know that the phase difference between

voltage and current is π/2. Therefore, cos φ = 0, and no power is dissipated
even though a current is flowing in the circuit. This current is sometimes
referred to as wattless current.

Case (iii) LCR series circuit: In an LCR series circuit, power dissipated is
given by Eq. (7.38) where φ = tan–1 (X

c 
– X

L 
)/ R. So,  φ may be non-zero  in

a RL or RC or RCL circuit. Even in such cases, power is dissipated only in
the resistor.

Case (iv) Power dissipated at resonance in LCR circuit: At resonance
X

c
 – X

L
= 0, and φ = 0. Therefore, cosφ = 1 and P = I 2Z = I 2 R. That is,

maximum power is dissipated in a circuit (through R) at resonance.

Example 7.7 (a) For circuits used for transporting electric power, a
low power factor implies large power loss in transmission. Explain.

(b) Power factor can often be improved by the use of a capacitor of

appropriate capacitance in the circuit. Explain.
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Solution (a) We know that P = I V cosφ where cosφ is the power factor.
To supply a given power at a given voltage, if cosφ is small, we have to

increase current accordingly. But this will lead to large power loss
(I2R) in transmission.

(b)Suppose in a circuit, current I lags the voltage by an angle φ. Then
power factor cosφ =R/Z.

We can improve the power factor (tending to 1) by making Z tend to R.
Let us understand, with the help of a phasor diagram (Fig. 7.17) how

this can be achieved. Let us resolve I into two components. I
p
 along

the applied voltage V and I
q
 perpendicular to the applied voltage. I

q

as you have learnt in Section 7.7, is called the wattless component

since corresponding to this component of current, there is no power

loss. I
P
  is known as the power component because it is in phase with

the voltage and corresponds to power loss in the circuit.

It’s clear from this analysis that if we want to improve power factor,

we must completely neutralize the lagging wattless current I
q
 by an

equal leading wattless current I′
q
. This can be done by connecting a

capacitor of appropriate value in parallel so that I
q
 and I′

q
 cancel

each other and P is effectively I
p
 V.

Example 7.8 A sinusoidal voltage of peak value 283 V and frequency

50 Hz is applied to a series LCR circuit in which
R = 3 Ω, L = 25.48 mH, and C = 796 µF. Find (a) the impedance of the
circuit; (b) the phase difference between the voltage across the source

and the current; (c) the power dissipated in the circuit; and (d) the
power factor.

Solution
(a) To find the impedance of the circuit, we first calculate X

L
 and X

C
.

X
L
 = 2 πνL

    = 2 × 3.14 × 50 × 25.48 × 10–3 Ω = 8 Ω
1

2
CX

Cν
=

π

FIGURE 7.17
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6

1
4

2 3.14 50 796 10−= = Ω
× × × ×

Therefore,

2 2 2 2( ) 3 (8 4)L CZ R X X= + − = + −
    = 5 Ω

(b) Phase difference, φ = tan–1 C LX X

R

−

=
−





= − °−tan .1 4 8

3
53 1

Since φ is negative, the current in the circuit lags the voltage

across the source.
(c) The power dissipated in the circuit is

2P I R=

Now, I
im= = 





=
2

1

2

283

5
40A

Therefore, A W
2(40 ) 3 4800P = × Ω =

(d) Power factor = ( )cos cos –53.1 0.6φ = ° =

Example 7.9 Suppose the frequency of the source in the previous
example can be varied. (a) What is the frequency of the source at

which resonance occurs? (b) Calculate the impedance, the current,
and the power dissipated at the resonant condition.

Solution

(a) The frequency at which the resonance occurs is

0
3 6

1 1

25.48 10 796 10LC
ω

− −
= =

× × ×

     222.1rad/s=

0 221.1
Hz 35.4Hz

2 2 3.14
r

ων = = =
π ×

(b) The impedance Z at resonant condition is equal to the resistance:

3Z R= = Ω

The rms current at resonance is

= = = 





=
V

Z

V

R

283

2

1

3
66 7. A

The power dissipated at resonance is

2 2(66.7) 3 13.35 kWP I R= × = × =

You can see that in the present case, power dissipated
at resonance is more than the power dissipated in Example 7.8.
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Example 7.10 At an airport, a person is made to walk through the

doorway of a metal detector, for security reasons. If she/he is carrying

anything made of metal, the metal detector emits a sound. On what

principle does this detector work?

Solution  The metal detector works on the principle of resonance in

ac circuits. When you walk through a metal detector, you are,

in fact, walking through a coil of many turns. The coil is connected to

a capacitor tuned so that the circuit is in resonance. When

you walk through with metal in your pocket, the impedance of the

circuit changes – resulting in significant change in current in the

circuit. This change in current is detected and the electronic circuitry

causes a sound to be emitted as an alarm.

7.8  LC OSCILLATIONS

We know that a capacitor and an inductor can store electrical and
magnetic energy, respectively. When a capacitor (initially charged) is

connected to an inductor, the charge on the capacitor and
the current in the circuit exhibit the phenomenon of
electrical oscillations similar to oscillations in mechanical

systems (Chapter 14, Class XI).
Let a capacitor be charged q

m
 (at t = 0) and connected

to an inductor as shown in Fig. 7.18.

The moment the circuit is completed, the charge on
the capacitor starts decreasing, giving rise to current in
the circuit. Let q and i be the charge and current in the

circuit at time t. Since  di/dt is positive, the induced emf
in L will have polarity as shown, i.e., v

b 
< v

a
. According to

Kirchhoff’s loop rule,

d
0

d

q i
L

C t
− = (7.39)

i = – (dq/dt ) in the present case (as q decreases, i increases).
Therefore, Eq. (7.39) becomes:

2

2

d 1
0

d

q
q

LCt
+ = (7.40)

This equation has the form 
2

2
02

d
0

d

x
x

t
ω+ =  for a simple harmonic

oscillator. The charge on the capacitor, therefore, oscillates with a natural
frequency

0

1

LC
ω = (7.41)

and varies sinusoidally with time as

( )0cosmq q tω φ= + (7.42)

where q
m
 is the maximum value of q and φ is a phase constant. Since

q = q
m
 at t = 0, we have  cos φ =1 or φ = 0. Therefore, in the present case,

FIGURE 7.18 At the
instant shown, the current

is increasing; so the
polarity of induced emf in
the inductor is as shown.
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